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Abstract— Many (may be most) real-world engineering 
optimization problems are implicitly or explicitly multi-
objective, and approaches to find the best feasible solution to be 
implemented can be quite challenging for the decision-maker. A 
method is proposed to incorporate uncertainty in the problem 
formulation while keeping the formulation simple. This enables 
users with limited knowledge about multi-objective optimization 
to use this method to solve problems. It is not uncommon to find 
real-life engineering examples where the decision maker has 
multiple objectives but must select one feasible solution that can 
be implemented as the system design. This poses somewhat of a 
problem because, when dealing with multiple objectives, either 
you determine a single solution or identify a Pareto optimal set. 
However, the Pareto-optimal set is often large and cumbersome, 
making the post-Pareto analysis phase potentially difficult, 
especially as the number of objectives increase. Our research 
involves the post-Pareto analysis phase, and two methods are 
presented to filter the Pareto-optimal set to determine a subset 
of promising or desirable solutions. The first method is pruning 
using non-numerical objective function ranking preferences. 
The second approach involves pruning by using data 
clustering. The k-means algorithm is used to find clusters of 
similar solutions in the Pareto-optimal set. The clustered data 
allows the decision maker to have just k general solutions to 
choose from. These methods are explained with examples. 

 
Keywords— Multi-objective optimization, Pareto-optimal set, k-
means algorithm, cluster analysis. 
 

I.  INTRODUCTION 
A methodology is presented to solve multiple-objective 
system reliability design problems with some (or all) 
stochastic objectives. In real-world engineering optimization 
problems are implicitly or explicitly multi-objective, and 
approaches to find the best feasible solution to be 
implemented can be quite challenging for the decision-maker. 
In this kind of problem, the analyst either determines a single 
solution or identifies a set of non-dominated solutions, often 
referred to as Pareto-optimal set. For these problems, the 
objective is to determine the maximum system reliability, but 
at a minimum cost and weight without explicit constraint 
limits. 
There are often multiple competing objectives for 
industrial scheduling and production planning problems. 
Two practical methods are presented to efficiently 
identify promising  solutions  from  among  a  Pareto-
optimal  set  for  multiple  objective  scheduling problems. 
Generally, multi-objective optimization problems can be 
solved either by combining the objectives into a single 
objective function using equivalent cost conversions, utility 
theory, etc., or by determination of a Pareto-optimal set. 

Pareto-optimal sets or representative sub-sets can be found by 
using a multi-objective genetic algorithm or by other means. 
Then, in practice, the decision-maker ultimately has to select 
one solution from this set for system implementation. 
The complexity of solving multi-objective problems involves 
two types of problem difficulties: i) multiple, conflicting 
objectives, and ii) a highly complex search space. For 
instance, consider the following production planning example 
with two objectives, makespan (f1) and cost (f2), to be 
minimized under a set of constraints. For this bi-objective 
problem, an optimum design should ideally be a solution that 
achieves the minimum make span at a minimum cost without 
violating the constraints. If such a solution exists, then it is 
necessary to solve just a single-objective optimization 
problem, because the optimal solution for the first objective is 
also optimal for the second objective. However, this rarely 
happens in real life multi-objective problems. With multiple 
objectives, there is generally not one unique solution which is 
best (global minimum or maximum) with respect to all 
objectives but a set of solutions which can not be dominated 
by any other solutions in the search space. These solutions 
are known as Pareto optimal solutions or non dominated 
solutions (Chankong & Haimes 1983; Hans 1988). 

 
Figure 1 : Pareto optimal solutions 

 
This paper is focused on the post-Pareto optimality analysis. 
The two main objectives of the post-Pareto optimality 
analysis are: i) obtain a small sub-set of preferred solutions 
from the large 
Pareto-optimal set, and ii) the evaluation and interpretation of 
the results obtained from any optimization method. The 
motivation for the current work stems from challenges 
encountered during the post-Pareto analysis phase. To reduce 
or intelligently limit the size of the Pareto-optimal set, we 
propose the following two methods: 1) pruning by using non-
numerical objective function ranking preferences method, 
and 2) pruning by using data clustering. The first method uses 
an approach analogous to the weighted sum method on the 
Pareto optimal set except that specific numerical weights or 
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penalties are not required. The objective functions are ranked 
non-numerically based on their importance to the decision-
maker, scaled and repeatedly combined into a single 
objective function using numerous randomly generated 
weight sets. The weight sets are selected to adhere to the 
decision maker’s objective function rankings. Then, the 
solution that gives the best result for a particular weight set is 
recorded. This process is repeated for a pre-selected number 
of iterations, and the final result obtained is a subset of 
solutions that most often provided the optimal combined 
objective function. This is a simple method that yields 
efficient results for any user who can prioritize the objective 
functions to find appropriate solutions. 
In the second approach, we made use of clustering techniques 
used in data mining. In this case, we grouped the data by 
using the k-means algorithm to find groups of similar 
solutions, and since the solutions contained in each cluster are 
similar to one another, the decision-maker now has just k 
general solutions to choose from. In this later approach, the 
decision-maker is not required to specify any objective 
function preferences. 
 

2. BACKGROUND 
2.1 Multi-Objective Optimization Problems: A general 
formulation of a multi-objective optimization problem 
consists of a number of objectives with inequality and/or 
equality constraints. Mathematically, the problem can be 
written as follows  
 minimize / maximize fi(x) for i = 1, 2, …, n 
Subject to: 
    0)( xg j     j = 1, 2, …., J 

   0)( xhk              k = 1, 2, …, K 

x is an n dimensional vector having n decisions or 
variables. Solutions to a multi-objective optimization 
problem are mathematically expressed in terms of non 
dominated or superior points. It is useful to express non 
dominance in terms of vector comparison; let x and y be two 
vectors of n components. Thus, x = (x1, x2,..,xn) and y = (y1, 
y2,..,yn). 

 
for a maximization problem, that x dominates y, iff 

   
for at least one i             i {1,2,.., n} 
similarly, for a minimization problem, that x 
dominates y, iff 

 
and  ii yx           

 for at least one i            i {1,2,.., n} 
 
X is defined as the set of feasible solutions or feasible 
decision alternatives. Thus, in a maximization problem x is 
non dominated in X, if there exists no other  in X such that 

 ≥ x  and   ≠ x. The set of all non dominated solutions in X 
is designated N. Then, the optimal solutions to a multi-

objective optimization problem are in the set of non 
dominated solutions N, and they are usually known as the 
Pareto-optimal set. 
 
2.2 Approaches to Solve Multi-Objective Optimization 
Problems: The two most common approaches to solve 
multiple objective problems are: 1) combine them into a 
single objective function such as the weighted sum method or 
utility functions, or 2) obtain a set of non-dominated Pareto-
optimal solutions. The weighted sum method belongs to the 
first approach. This method consists of aggregating all the 
objective functions together using different weighting 
coefficients for each one. This means that the multi-objective 
optimization problem is transformed into a single objective 
optimization problem. The problem can then be solved using 
a standard optimization algorithm or by using a heuristic.  

Mathematically, the weighted sum formulation is 
written as: 

 
         

 
Where  

 

     i  {1,2,...n} 
 

There is no real need or requirement for the wi terms to sum 
to one. However, this constraint is convenient and it is often 
added when the objective functions have all been similarly 
s

caled, e.g., 0 to 1. When the objective functions have been 
s

caled, the weights then represent the relative importance of 
each objective function. If the objective functions have not 
been scaled, then often the second, third, etc., objective 
functions have penalties assigned to them (for minimization 
problems). This is functionally identical to the weighted sum 
approach. 
The weights must then be selected by the decision-maker 
prior to determination of the optimal solution. Often 
experienced practitioners have difficulty reliably selecting 
s

pecific values even if they are intimately familiar with the 
problem domain. 
The solutions are strongly dependent on how the weights 
were chosen. Similarly, the choice of utility functions in 
utility theory is analogous to the selection of weights. In this 
case, a set of assumptions has to be made. For instance, it is 
often assumed that the different utilities are mutually 
independent, and either additive or multiplicative. Since 
utility theory is mathematically rigorous, more effort is 
needed to establish the utility functions. 
I

n the second approach to solve multi-objective problems, 
optimization is conducted without the decision-maker 
articulating any preferences among the objectives. The 
outcome of this optimization is a set of Pareto-optimal 
s

olutions that reflects the trade-off between the objectives. 
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A dominates B 

B dominated by A 
(A is better than B) 

 
A and C are non dominated with each other 

 
This set can contain hundreds or even thousands of solutions, 
making it difficult for the decision maker to select one 
solution as final implementation. Then, there is a need to 
bridge the gap between single solutions and Pareto-optimal 
sets as shown in Figure 2. 

 
Figure 2: Achieving a balance between single solutions and 

Pareto optimal solutions 
 
Data Clustering: 
In multi-dimensional situations, data clustering can be very 
insightful. Clustering is a data mining technique, which is 
used to solve classification problems. Currently, clustering 
methods are applied in many domains such as in artificial 
intelligence, pattern recognition, decision making and many 
more. Cluster analysis is used to find groups in data, and such 
groups are called clusters. Basically, the clusters are formed 
in such a way that objects in the same group are similar to 
each other, whereas objects in different groups are as 
dissimilar as possible. 
There exists a wide variety of clustering algorithms. The two 
main branches of clustering algorithms are partitional and 

hierarchical methods. The k-means algorithm is probably the 
most widely applied nonhierarchical clustering technique. 
The k-means algorithm is well known for its efficiency in 
clustering data sets. The grouping is done by calculating the 
centroid for each group, and assigning each observation to the 
group with the closest centroid. For the membership function, 
each data point belongs to its nearest center, forming a 
partition of the data. The objective function for the k-means 
algorithm is: 

 
 
 

where, 

ix = ith data vector 

jc = jth cluster centroid 

X = set of data vectors 
C = set of centroids 

 
This objective function gives an algorithm which minimizes 
the within-cluster variance (the squared distance between 
each center and its assigned data points). The membership 
function for k-means is: 
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 The silhouette plot, to evaluate the quality of a clustering 
allocation, independently of the clustering technique that is 
used. The silhouette value for each point is a measure of how 
similar that point is to points in its own cluster compared to 
points in other clusters. It is defined as: 

 
 
 

where, a(i) is the average distance from the ith point to all the 
other points in its cluster, and b(i) is the average distance 
from the ith point to all the points in the nearest neighbor 
cluster. 
3. Combined Multiple Objective Genetic Algorithm 
(MOGA) and Post-Pareto Analysis: 
The general approach involves the determination of a 
representative approximation of the Pareto optimal set using 
MOGAs, and then, filtering of that general set based on more 
specific information or decision maker input. We propose 
two methods to narrow the size of the Pareto optimal set, and 
thus, provide the decision-maker a workable size set of 
solutions, called the pruned Pareto set. The first method is 
called pruning by using non-numerical objective function 
ranking preferences and the second one is pruning by using 
data clustering. 
When the decision-maker understands the objective function 
preferences to use but can not select specific wi values, 
he/she may prefer to use pruning by using the non-numerical 
objective function ranking preferences method, since this 
method will certainly provide solutions that reflect his/her 
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particular interests and priorities. On the other hand, if the 
decision-maker does not know a priori the importance of the 
objective functions, pruning by using data clustering is the 
most suited method to use. Moreover, the two methods can be 
sequentially combined in cases with larger number of 
objective functions. 
3.1 Multiple Objectives Genetic Algorithm (MOGA) - NSGA 
II 
The first step is to determine an approximate Pareto optimal 
set using a MOGA. For our research, the fast elitist non-
dominated sorting genetic algorithm II (NSGA-II) was 
proposed by 
Deb et al. (2000a, 2000b). This algorithm is an improved 
version of the non dominated sorting genetic algorithm 
(NSGA). The algorithm reduces the computational 
complexity and maintains the solutions of the best Pareto 
front found including them into the next generation. This 
algorithm is highly efficient in obtaining good Pareto-optimal 
fronts for any number of objectives and can handle any 
number of constraints as well. 
3.2 Pruning Using Non-numerical Objective Function 
Ranking Preferences Method 
This approach only requires the decision-maker to express 
his/her objective function Preference without having to 
provide exact weight values or specify utility functions. This 
is obviously, a rather soft way of stating information on 
priorities. Thus, the result of this method is a pruned Pareto 
set that clearly reflects the decision-maker objective function 
preferences. 
Similar ideas have been explored in multiple criteria decision 
analysis. For example, Lahdelma et al., (1998) proposed 
Stochastic Multi objective Acceptability Analysis (SMAA) to 
explore the n-dimensional weight space based on an assumed 
utility function. In Rietveld and Ouwersloot (1992), a random 
sampling approach is proposed to generate quantitative 
values, which are consistent with the underlying ordinal 
information. 
For other problem domains, similar pruning approaches have 
been used. For system reliability optimization problems, 
pruning has been demonstrated where the objectives were to 
maximize system reliability, minimize cost and weight 
(Kulturel-Konak et al, 2005; Taboada et al, 2005; 
Baheranwala, 2005; Coit & Baheranwala, 2005). 
Initially, the objective functions are scaled, and then, ranked 
non-numerically by the decision-maker. Then, based on the 
rankings, an n-dimensional weight function fw(w) is 
developed (similar to a joint distribution function), indicating 
the likelihood of different weight  combinations. The 
algorithm used to prune Pareto-optimal solutions is listed 
below: 
1. Rank objectives 
2. Covert all objectives to be for maximization and Scale 
objectives (from 0 to 1) 
3. Randomly generate weights based on ranks using the 
weight function fw(w) 
4. Sum weighted objectives to form a single function f ′ 

5. From the Pareto optimal set, find the solution that yields 
the maximum (optimal) value for f ′ 
6. Increment the counter corresponding to that solution by a 
value of one 
7. Repeat Steps 2 to 5 numerous (several thousand) times 
8. Determine the pruned Pareto optimal set, i.e., the solutions 
that have non zero counter values 
    (counter > 0) 
To demonstrate how this pruning method works, consider a 
problem with three objective functions. 
 
Consider the case where the objective function preference is 
f1 >f2 >f3, and thus, w1>w2>w3 for scaled objectives. For 
this region the weight function is defined as follows: 
 



 


elsewhere

wwwc
wfw ,0

,
)( 321

c is a constant so we are uniformly considering the possible 
weights within the preference region. Taking into account the 
decision-maker’s  preferences, the region from where the 
weights are sampled and then combined with the objective 
functions, is shown in Figure3. A similar weight feasible 
region was described by Rietveld & Ouwersloot (1992). 
 

 
Figure 3: Weight Region for the f1 >f2 >f3 Objective 

Function Preference 
 
The weights, uniformly sampled from the region of interest, 
adhere to the decision maker’s objective function rankings. 
For instance, the possible values for the weights in the case  
f1>f2>f3 are 3/102/10,13/1 321  wandww . 

The solution that gives the best result for this particular 
weight set is selected. 
This process is conducted numerous (e.g., several thousand) 
times, and the best solutions in each iteration are recorded. 
This set of solutions becomes the pruned Pareto-optimal set, 
which is a sub-set of the original Pareto-optimal set. Each 
solution in the pruned set is potentially the “optimal” solution 
to a weighted sum multiple objective problem. However, the 
user is only required to specify the ranking of the weights. 
This method has been observed to achieve a 90% reduction of 
the entire Pareto-optimal set (Baheranwala, 2005). 
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3.3 Pruning by Using Data Clustering 
This approach is more useful for decision-makers that are less 
knowledgeable with the problem domain to specify any 
objective function preference. The result is a pruned Pareto 
set from which the decision-maker then only needs to 
consider k particular solutions. 
Initially, the k-means clustering algorithm is used to group 
the solutions of the Pareto-optimal set into clusters. The k-
means algorithm (MacQueen, 1967) is composed of the 
following steps: 
1. Place k points into the space represented by the objects 
that are being clustered. These points      represent initial 
group centroids. 
2. Assign each object to the group that has the closest 
centroid. 
3. When all objects have been assigned, recalculate the 
positions of the k centroids. 
4. Repeat Steps 2 and 3 until the centroids stabilize (no 
longer move). 
Like any clustering routine, which solves a minimization 
problem, k-means often converges to one of the many local 
minima, which is not necessarily the global solution. To 
overcome this situation, several runs are performed to find 
the smallest sum over all elements of the squared Euclidean 
distance (or another distance measure). 
To determine the optimal number of clusters, k, we made use 
of the silhouette plot as suggested by Rousseeuw (1987, 
1989). Since silhouette plots are based on the evaluation of 
the silhouette width, s(i), we calculated this measure for 
several values of k, and the clustering with the highest 
average silhouette width was selected as the optimal number 
of clusters in the  Pareto optimal  et. 
After obtaining the optimal number of clusters, the data was 
grouped into k clusters. The members within a cluster are 
similar to one another, and members from one cluster to 
another are highly dissimilar. One approach to select a final 
solution, among all solutions contained in a group, is to 
identify what solution is the closest to its centroid. With this, 
the decision-maker has now just k general solutions to 
analyze, instead of all the solutions contained in the Pareto 
optimal set. Alternatively, the decision maker can first select 
the preferred cluster that most accurately reflects their 
priorities, and then, select from among those solutions within 
the cluster. If the solutions are indistinguishable or 
equivalent, then the solution closest to the centroid is again 
selected. 
3.4 Combining the Non-numerical Objective Function 
Ranking Preferences Method and Data      Clustering 
The combination of the two proposed methods is ideally 
suited to address complex multi objective optimization 
problems in which the Pareto-optimal set is very large. For 
this type of problem, where the Pareto-optimal set can 
contain thousands of solutions, the combination of the two 
pruning methods might be preferred. In such cases, pruning 
by using the non-numerical objective function ranking 
preferences method should be initially applied to obtain a 
Pareto subset that reflects the decision-maker’s objective 

function preference, and then, pruning by using data 
clustering can be applied to further reduce the size of the 
Pareto sub-set. Thus, the decision maker gets a smaller set of 
solutions to analyze and select one solution for 
implementation. 
4. Numerical Example - Scheduling of Unrelated Parallel 
Machines: 
An example is used to illustrate the two proposed methods to 
narrow the search space. The example addresses the 
scheduling of a Printed Wiring Board (PWB) manufacturing 
line (Yu et al., 2002). All analyses and computer runs were 
performed on personal computers. NSGA-II was compiled in 
C, and the data clustering was performed using MatLab. 
The drilling of PWBs is performed by a group of unrelated 
parallel machines (Yu et al.,2002) which must be scheduled. 
The processing time of each lot may be different for different 
machines, and a machine that has a shorter processing time 
for a particular lot may have a longer processing time for 
another lot. There are multiple criteria that need to be 
considered to determine the best schedule. Parallel machine 
scheduling problems are generally NP-hard problems (Karp, 
1972). In terms of the complexity hierarchy of deterministic 
scheduling, unrelated machines scheduling problems are 
some of the most difficult to solve. 
Yu et al. (2002) proposed a Lagrangian Relaxation Heuristic 
(LRH) method to solve this PWB scheduling problem. They 
constructed an integer programming model with a special 
structure called uni modularity. In order to account for 
multiple objectives of the scheduling system, they introduced 
preference constraints and brought them into the objective 
function by using  Lagrangian relaxation. 
We formulated the PWB scheduling problem as a multi-
objective problem considering four objectives to be 
minimized: minimize overtime, minimize average finish time, 
minimize the variance of the finish time and minimize the 
total cost. The multi-objective formulation is as follows: 

 
  


m

i

n

j
ijij

m

i

m

i
cici xCmCo

1 11 1

2 min,/)(min,min,min    

Subject to: 





m

i
ijx

1

1  





n

j
tjiji xpC

1

 

 

mC
m

i
ic /

1



  

xij {0, 1} 
where, 

=  

Praveen Kumar Malladi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4331 - 4338

4335



 

Oi = overtime on machine i 
m = number of parallel machines 
n = number of lots to schedule 
ij p = processing time of lot j on machine i 
ij c = cost of processing a lot j on machine i 
T = lot release interval time 
 
The processing times and the processing costs are shown in 
Tables 1 and 2 respectively (Yu et al, 2002). The release 
interval time, T, is equal to 3 time units. To satisfy feasibility, 
a large cost is assumed for processing a lot that cannot be 
processed by certain machines, such as in the cases of lot 1 
on machine 1 and machine 2, forcing them to be scheduled on 
a machine that can perform the job. 
 

Table 1: Processing times for PWB scheduling problem 

 
 

Table 2: Processing costs for PWB scheduling problem 

 
The multi-objective scheduling of this PWB problem was 
initially solved using the NSGA-II algorithm, to determine a 
Pareto optimal set; with a population size of 500 and the 
algorithm was run for 150 generations, with the probability of 
crossover as 0.7, and taking the probability of mutation to be 
0.03. There were 28 solutions in the Pareto-optimal set. The 
post-Pareto analysis was then performed on these 28 
solutions to provide the decision-maker a workable sub-set of 
solutions by using the two proposed methods. 
4.1. Pruned Results Using the Non-numerical Ranking 
Preference Method: 
The non-numerical ranking preference combination selected 
to illustrate this example is the case in which overtime (O) is 
more important than average finish time (AFT) , which is 
more important than variance of finish time (VFT), which is 
more important than cost (C) (O>AFT>VFT>C: 
w1>w2>w3>w4). Figure 4 shows, in a two-dimensional 
space, the 28 solutions contained in the Pareto-optimal set. 

 
Figure 4: Pareto-optimal set in a two-dimensional  space 

 
Table 3 shows the pruned solutions obtained by applying the 
proposed method to narrow the search space. Of the original 
28 solutions, the pruned set only includes 3; solution 1 has 
the minimum overtime but it is achieved at a higher cost than 
solutions 2 and 5. On the other hand, solution 5 presents the 
minimum cost but it has the highest average finish time as 
well as the highest variance of the average finish time. 
 

Table 3 : Pruned solutions 

 
The pruned solutions obtained considering the 
w1>w2>w3>w4 objective function preference are shown in 
triangles in Figure 5. In this case, by using this method, it was 
achieved an 89.2% reduction in the solutions obtained from 
the Pareto-optimal set. These pruned solutions would then be 
further analyzed by the decision-maker. Solution 2 is shown 
as an example of a schedule for the PWB scheduling problem 
in Figure 6. 

 
Figure 5: Pruned solutions for the w1>w2>w3>w4 objective 

function preference 
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Figure 6: Schedule for solution number 2 

 
4.1.2 Pruned Results by Using Data Clustering 
Using the k-means algorithm, clustering analysis was 
performed on the 28 solutions contained in the Pareto-optimal 
set and we found k = 3 to be the optimal number of clusters 
with the aid of the silhouette plots. Figure 7 shows the three 
clusters in a three-dimensional space, for minimizing 
overtime, minimizing average finish time and minimizing 
cost. Figure 8 shows the clusters in a three-dimensional space 
for minimizing overtime, minimizing average finish time and 
minimizing the variance of the average finish time. In Figures 
7 and 8, the fourth objective (minimize variance of average 
finish time and minimize cost, respectively) is not shown but 
it is still considered in the analysis. The objective functions 
have been scaled from 0 to 1. 

 
Figure 7: Clustered data in a three-dimensional space 

 

 
Figure 8 Clustered data in a three-dimensional space 

 
Table 4 shows the summary of the results obtained by using 
the k-means algorithm. This table includes the representative 
solutions that were closest to their corresponding centroid. As 
we can see from Table 4, solution number 6 from cluster 2 
gives the minimum overtime, average finish time and 

variance of the average finish time but it has the highest cost. 
On the other hand, solution 28 from cluster 1 has the lowest 
cost but it also gives the highest overtime and variance of the 
average finish time. The decision-maker has to pick one 
solution; in this case solution 6 from cluster 2 may seem to be 
the most promising solution since it achieves the minimum 
value in 3 out of the 4 objective functions considered. Figure 
9 shows the schedule for solution 6. 
 

Table 4: Results obtained with the cluster analysis 

 
 

 
Figure 9: Schedule for solution number 6 

 
For both pruning methods, the decision-maker only needs to 
consider three solutions (instead of 28). It is much easier and 
convenient to select from among 3. The first pruning method 
is most appropriate when the decision-maker can prioritize 
their objectives, while the second does not require the 
decision-maker to a priori specify any objective function 
preference. 

 
V. CONCLUSION 

A popular method of “solving” multi-objective problems is to 
determine a Pareto-optimal set or sub-set. However, this then 
requires the decision-maker to select from among this set of 
solutions, which is often large when there is more than two 
objective functions. Therefore, meaningful research has to be 
done to support the decision-maker during this post-Pareto 
analysis phase. In this paper, two methods are reviewed to 
prune the size of the Pareto-optimal set. This pruned Pareto 
set gives the decision-maker a workable sized set of 
alternatives to choose from. 
The first method, pruning by using non-numerical ranking 
preferences, provides the decision-maker a set of solutions 
that match his/her preferences and compare solutions with 
different objective function combinations. This method, in 
contrast with the weighted sum method, does not require the 
decision-maker to specify precise weight values or equivalent 
cost metrics. The different weight combinations are generated 
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using the weight function fw(w) which reflects the decision-
maker preferences. 
In the second approach, we used the k-means algorithm to 
group the solutions of the pareto optimal set into k different 
clusters, and since members in the same cluster are similar to 
each other, the solution that was closest to the centroid of 
each cluster was chosen to be the representative solution in its 
respective cluster. Then, the size of the Pareto-optimal set 
was reduced to just k general solutions to analyze by the 
decision-maker. 
The two methods were demonstrated on the scheduling of the 
bottleneck operation of a PWB manufacturing line. In 
general, the two proposed methods are approaches that help 
achieve a continuum between Pareto-optimal solution sets 
and single solutions. 
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